a2 United States Patent

Pujare et al.

US009077726B2

US 9,077,726 B2
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

HUB BASED CLEARING HOUSE FOR
INTEROPERABILITY OF DISTINCT UNIFIED
COMMUNICATION SYSTEMS

Inventors: Sanjay M Pujare, San Jose, CA (US);
Saravanan Bellan, San Jose, CA (US);
Silvia Restelli, San Jose, CA (US);
Yogesh Raina, San Jose, CA (US);
Farzin Khatib-Shahidi, Los Altos Hills,

CA (US)
Assignee: Nextplane, Inc., Sunnyvale, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 665 days.

Appl. No.: 13/077,710

Filed: Mar. 31,2011

Prior Publication Data
US 2012/0254373 Al Oct. 4, 2012
Int. CI.
GOGF 15/16 (2006.01)
GOGF 17/00 (2006.01)
HO04L 29/06 (2006.01)
HO4L 12/58 (2006.01)
HO4L 29/12 (2006.01)
U.S. CL
CPC HO4L 63/104 (2013.01); HO4L 61/2575

(2013.01); HO4L 61/2589 (2013.01); HO4L
69/08 (2013.01); HO4L 51/066 (2013.01);
HO04L 65/1006 (2013.01); HO4L 51/36
(2013.01); HO4L 65/103 (2013.01)
Field of Classification Search
USPC e 709/246, 249, 707/602
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,463,056 Bl 10/2002 Silva et al.

6,591,291 B1 7/2003 Gabber et al.

7,558,827 B2 7/2009 Kawashima et al.

7,698,398 Bl 4/2010 Lai

8,359,357 B2 1/2013 Rodriguez
2002/0087704 Al* 7/2002 Chesnaisetal. 709/228
2005/0047438 Al 3/2005 Sylvain
2006/0128409 Al 6/2006 Gress et al.
2006/0230124 Al 10/2006 Belfiore et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1549024 Al 6/2005
OTHER PUBLICATIONS

PCT International Search Report; Jul. 8, 2011.
(Continued)

Primary Examiner — Ranodhi Serrao
(74) Attorney, Agent, or Firm — Steptoe & Johnson LLP

(57) ABSTRACT

A hub-based clearing house for interoperability of distinct
unified communication systems is disclosed. According to
one embodiment, a system comprises a database that stores
configuration information for the system; an administrator
module that maintains the configuration information; a fed-
eration server that is connected to a first unified communica-
tions system and a second unified communications system.
The federation server comprises a first translator that trans-
lates a first formatted message received from the first unified
communications system into a common language formatted
message, a second translator that translates the common lan-
guage formatted message into a second formatted message,
and a routing engine that routes the second formatted mes-
sage to the second unified communications system.

21 Claims, 17 Drawing Sheets

domain B

domain A

domain C
™ &y
EJ 331
-—350

ucz
341

domain D

US 9,077,726 B2
Page 2

(56)

2007/0011245
2008/0086465
2009/0019367
2010/0017598
2010/0057851
2010/0205664
2011/0035443

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al

1/2007
4/2008
1/2009
1/2010
3/2010
8/2010
2/2011

Kawashima et al.

Fontenot et al.
Cavagnari et al.
Rodriguez
Tonescu et al.
Serr et al.
Jensen

OTHER PUBLICATIONS

Bossoli, et al; “Proposal for Common Interoperability Protocol”,
Online, Aug. 30, 2003, pp. 1-3, XP002283230.

Supplementary European Search Report issued Aug. 20, 2014 in
corresponding EP Application No. EP 11862613 filed Apr. 26, 2011,
inventor Pujare, Sanjay et al.

* cited by examiner

US 9,077,726 B2

Sheet 1 of 17

Jul. 7, 2015

U.S. Patent

ﬂw

N
N
A Y
I/I P

@) ulewop

(34e 1011d)

€0T Jul] Wwoisnd

\\\\.\.\l\/

T 'Ol

@ =<

N

TOT Hujj
uolleiapay

| __—
&

g ulewop

7

S
\
N

Ll

V ulewop @
l\%v_c__
wojsnd

@)

US 9,077,726 B2

Sheet 2 of 17

Jul. 7, 2015

U.S. Patent

(32e J014d)

D ujewop

¢ 'Old

907 |
wojlsnd

0ce

e~

€0T AU
wolsnd

@ ulewop

g uiewop

70T |
wojisnd

/II'.\\
\%' Ao]|

uol3eIapPay

_» |\®
Y ulewop @

U.S. Patent Jul. 7, 2015 Sheet 3 of 17 US 9,077,726 B2

domain C
C
331

>

355

domain B
UCx
321
352

P4
-

trans X '\T‘/‘ trans Y "
354
UcCz
341
domain D

NV
16¢€
3
A 4
<
= xX
HEeR- "
o
: 0

US 9,077,726 B2

Sheet 4 of 17

Jul. 7, 2015

U.S. Patent

peon

‘vov
4

Iov
(WV) aInpo
Jojensiuwpy

Y

or
(gq) aseqeleq

¥ 'Old

o S

US 9,077,726 B2

Sheet 5 0f 17

Jul. 7, 2015

U.S. Patent

S 'Ol

¢ wjesy

¢ wjesy

| Wiesy <

US 9,077,726 B2

Sheet 6 of 17

Jul. 7, 2015

U.S. Patent

809
10193UU0d

3uo081no eia
2N uoijeunssp
01 dsw puas

F 3

£09
(s1ewuoy
pa1oel1Xa asn)
auldus ajejsuely

A

909
(s4appe
paloesIxa asn)
au18ua 3unnnou

»

S09
S1eWLIO}
/ Sippe 10e41%d

F 3

9 'SOld

¥09
10443 puas

{Bsw puedsip

A
ou

€09

sah

émojje sapijod

209
I3|puey
|[020304d ||€D

»
pajosjep
obessaw

109
Ajsnonunuoo

SUa]sl|
J0}23UuUQd

US 9,077,726 B2

Sheet 7 of 17

Jul. 7, 2015

U.S. Patent

2l
Aon

L "9l

M~

anH
- -
e R v
7 N
¥4 Al -
’ /.\ - S
’ 42 \ A
- ! \ A
AN aa k
/ \
7/
7 I r 3 \
’ ! -7
! \
k J— \
. TeL \
! NV '
| \
e | '
4 \ v !
y __ = s
/ , vEL ,
7 v ss4 [o=
\ AY
! \ y \
! N 1
__ s|eubis [o)uod \
1
) A !
1 a1 BIPD T 9l !
_ i4jeJ} eipsy _ cc/ B ey eipsiy ._
- . -
Y (popoout o ’
peposu Buipoosuel;) i VL
h - s|eubis |o5u02 |5
) A 4 y !
X 1
1 !
' SEL !
\ 1apodsuesy /
\ r}
7
z/p \ \\
, , ; S S~
\ / > ’
\ \-/ 4 /l - ’
\ 4 -
SN s N LS ’

US 9,077,726 B2

Sheet 8 of 17

Jul. 7, 2015

U.S. Patent

s 608 1€
, 33 Jamsue
» [UEE[]:5) ,
\ 10 lemy 4

808
19)|e2 01 Ssw

LSugun, ag|es

£08
S4 03 8sw
Juawaspajmoude
ue Spuas Jn s,93||ed

siamsue 99||eo

018
popaau jI aje|sueny
{19||e2 0} o8essow ,1dadde,
puas /Sy 01 way)l puos
‘sa1eplpued 29||ed 3yl 19D

S

/ 118 \
’ saleplpued \
{ leuyy)
i\ puss o3 ’
N ’
v SYJojlem

[SR —_— -

sajepipued

+——— |euy spuss Sy

718
(jo20104d
33)|e3 Aq paldadxe
§1) 99]|e2 01 B)epipUED
99]|8J |eul} SY 9yl puas

-
”
7’

4
/

I 3

———
- -
-~
~

T8 .
paysijgeisa

4

led R

-
~ -
- —-—

908
papaau yl Ssw 31e|suesy
‘29||ed 01 Ssw puas
pue Ssw ,@1eul,ue
ul 9pnjdul 01 23||Bd 10}
sajepipued §Y 3y} 139|103

8 'Old

508
1afgo a1e3s-|ed ul
9ABS pue d3||ed pue

Sy o3jesedos

13||ed 1o} selepipued

Sywoy __ .

sajeplpues Sy

/
/
’

— _-——-

v08

A
A Y

‘ sajepipued

A

/

A
4

N syuopuem 7

€08
SY 9Y3 03 sa1epIpued
J3)|e2 ||e spuas 4

f

208
papaau ji ajejsues)
‘ojul 1EpIpUED 13)|ED
ay3 sasJed ‘13(qo

9]e1S-|jd B $31ea4D S

i

108
a8essaw 21e11Ul,, |
eIpal B SIAI9034 S4

|ed

US 9,077,726 B2

Sheet 9 of 17

Jul. 7, 2015

U.S. Patent

016
Japodsuedy

woJ}/01 syod
240W 7 pue |puueyd
3uipodsuel) a1ed0jje

A 4

116
Japoosuey

nuy} og s1ayded
1eY3 0S Suipaemuoy
13oed dn 1as

A A

[413
(pa4inbau 41 sapodsues)
pue) suod |e20j Z 9y}
uaamiaqg 3uipiemiol
19yoed dn 195

606 S
épaiinbai
Buipossuesy L~

806
2lepipued
CE[[YHET[[2)
pamadais 01
dlepipued gy wody
1s9nbau Suipuiq
NMLS e puas

F 3

ON

106
G4 03 sa1epipued
Sy 2Yy3 puas

6 "'Old

906
99||ed pue J3||ed

F 3

1o} a1pIpUED
Sy 91830

i

S06

SA

A 4

1a(qo |je>
01 91BpIpUED ppE

f

¥06
pi-|1€d 404
129[qo ||ed a1eald

ozH

- v ~
-7 €06 T~.
-~ éprijes S~
~ Joj asaud P
- -

-

~~ pelqojey -
~ -

>

206
2jeplpued
Sy |ed0] Yoea 10}
1010831 3Dj ue dn 313s

i

106
juduodwon |[ed e oy

S4 woJy 3sw ajepipued
-ppe ue saAIaJa1 §Y

US 9,077,726 B2

Sheet 10 of 17

Jul. 7, 2015

U.S. Patent

J— €T0T
1ot 9iendousdde
,2lqemm
|, 1 91epipued 1saq ajepdn

“PEdl, ‘sJaquinu aduaiaa.d
sejJew

ajepipued asedwod
SIA

- ~

-7 800T “~~_

11707
g @1epipued |30} eIA

0T 'Sl

;\/\ ;31qEIIM ~ e puas pue y ajepipued
ON Soo peas L7 910W?J 10§ 31sanbau
//4\\ NNLS e ajesauad
SOA S9A
———t— \\\’II \\\’I/ \\\ ,I p——
£001 _--7900T ~~_ _--7 800T ~~. _ =7 800T ~~_ 0107
SlgeIIM, le— éalgeIIM T~e— éasuodsal T — ¢dgepeal S~ ,3|qepeaJ,
seyJew ON S~ Apeaye -7 asuodsar < _ojsanbay .~ 7 oasenbas S~ Apeaye <7 ON se yJew
SO - - ~o- -] -
SaA SaAlLE asuodsal
/1senbai Buipuiq unig
- —-— = = == - -~
——= S ’ LoOL \
v001 _ -7 E00T “~. 2001 S osuodssy
Suiyiou op 7 fums S~ s3jepipued (g) |edo| pue [‘. 1senbes BUIPUIG
o Se -7 :) /7
/ 9suodsad Jouud puas N ~. /E_mw\ .- (v) @10W3) yum a1emposse * NNLS o Vem v
-~ - - [—

’

US 9,077,726 B2

Sheet 11 of 17

Jul. 7, 2015

U.S. Patent

-~
-

.~ S0TT "~

i ~

”

L0171
Jdaeplpuesisad le -
0} 19oed piemiod oN
Y011
—
19yoed ay3 doig oN

~

-

~

$S1SIX
[puueyd

~ -,
~ l@UOumthP -
~ -

~

-
-~ ~

-~ €0TT "~
é19yoed
=~ &rpplen -

1

rd

-

1T 'Ol

9011
d1 19ad ay31 03 19xjoed

paemioy pue (d]) 19ad
Suipoosueu} sy3 91e307

011

(Dd) @1epipued
193d sy} 93ed07

saAlLe 19x0ed ejeq

=== i N

T0TT
19y0ed (dowu uo
du) erep Joj uem

US 9,077,726 B2

Sheet 12 of 17

Jul. 7, 2015

U.S. Patent

<1 'Ol

S0ZT
pajeuiw.ay st |jea

roct
9jeudoasdde se

pale|suedy si 8sw Ssw
wswospamouyde
SpU3s 931BUIWIS)

i

€0Z1
djeludosdde

se pajejsuen
S| 3sw {, 991eUtua),)
pus Jaylo 3y}
03 3sw ,91eutwial,
3y1 spuas s

1

[{\148
Sy 01 98essaw
Ldnduey, spuas 4

ﬁ

T0CT
o8essow

3)jeuUIWId]Y,, e
eIPaW B SAAIDII S

U.S. Patent Jul. 7, 2015 Sheet 13 of 17 US 9,077,726 B2

OCS SU sends

file request
1301
OCsS suU GTALK RU sends GTalk RU
connects to FSS |e acceptance » connects to FSS
1303 1302 1309
1304 HTTP GET
| 1310
OCS SU sends MSN_SECURE_FTP l
1305
l FSS sends HTTP
FSS sends USR response
sends 1311
1306
OCS SU sends FIL
1307
FSS sends TFR
1308 '
File is sent
1312
y y
FSS sends BYE FSS closes
1313 connection with
' GTalk
OCS SU sends 1314
MAC signature
1314
0OCS SU closes
connection with
FIG. 13
FSS
1314

U.S. Patent Jul. 7, 2015 Sheet 14 of 17 US 9,077,726 B2

GTalk SU sends

file request
1401
OCSRU OCS RU sends GTalk SU
connects to FSS [« acceptance » connects to FSS
1403 1402 1409
OCS RU sends MSN_SECURE_FTP FSS sends HTTP
1404 GET
! 1410
FSS sends MSN_SECURE_FTP l
1405
l GTalk SU sends
OCS R 35 USR HTTP response
CSRU sends U 1411
1406 —
FSS sends FIL
1407
OCS RU sends TFR
1408 i
File is sent
1412
\ 4 A 4
OCS RU sends BYE GTalk closes
1413 connection with
) FSS
FSS sends MAC 1416
signature
1414
FSS closes
connection with
FIG. 14 0CS RU
1415

US 9,077,726 B2

Sheet 15 0of 17

Jul. 7, 2015

U.S. Patent

cest
ad

TesT
NV

0661

~—

Ippe any

Wwod'X

"NQD4 | uiewogq

R N bttt

ST "Old

0LS1

Waod'x

I §

PLGE
X ujwpe

P S

1) 21 N

Jppegny

woo A

NQO4 !

)
A

urewoq

1
N R L LT T

US 9,077,726 B2

Sheet 16 of 17

Jul. 7, 2015

U.S. Patent

9T 'Old

“l IIIIIIIIIIIIIIIIIIII
i Jppe any
poTTTT Tt
.................................. 'm LUUN'QJF_ “ EOO>
1 NOO4 | ulewod
ov9olL —+ L

;o Tz N . 0191

\ H
1 8d ! V
S\ a !

N TE9T . woa'X

Wv

US 9,077,726 B2

Sheet 17 of 17

Jul. 7, 2015

U.S. Patent

LT Ol

0S/T
A A 3 A
Y A 4 A\ 4 %
eEvLL [47A" | oa hmwu ovLT
Aejdsip pieoqAay 10SIND uonedIuNWWod

—_— 0€LT
OLL1 CRlIRE]]
Jossasoud
0/l
F 3 y 3
A 4) 4
0zt
snq
A F 3 F
A 4 A 4 Y
—_ — STAAN
T¢LT 9¢L1 AJowaw
28e103s NOY urew

N
004}

US 9,077,726 B2

1

HUB BASED CLEARING HOUSE FOR
INTEROPERABILITY OF DISTINCT UNIFIED
COMMUNICATION SYSTEMS

FIELD

The present system and method relate to unified commu-
nications (UC) systems, and more particularly, to providing a
highly scalable system for interconnecting distinct and inde-
pendent UC systems in a federated manner.

BACKGROUND

A unified communications (UC) system generally refers to
a system that provides users with an integration of commu-
nications services. Users typically connect to the UC system
through a single client to access the integrated communica-
tions services. The integrated communications services may
include real-time services, such as instant messaging (IM),
presence notifications, telephony, and video conferencing, as
well as non-real-time services, such as email, SMS, fax, and
voicemail.

Organizations, such as corporations, businesses, educa-
tional institutions, and government entities, often employ UC
systems to enable internal communication among its mem-
bers in a uniform and generally cost-efficient manner. In
addition, organizations may employ UC systems for commu-
nicating with trusted external entities.

Currently, a number of third-party developers offer various
UC applications for implementing UC systems. The various
applications include Microsoft Office Communications
Server (OCS), IBM Sametime (ST), Google Apps, and Cisco
Jabber. Because there is no industry standard regarding UC
systems, issues of incompatibility arise when one UC system
needs to communicate with a different UC system. In one
case, a corporation or business that employs a particular UC
system may desire to communicate externally with vendors or
other persons who employ a different UC system. Or in the
case of internal communication, when an organization that
employs a particular UC system “A” merges with another
organization that employs a UC system “B”, the ability for
users on system “A” to communicate with users on system
“B” is often desirable. Nevertheless, the incompatibility of
the UC systems often makes communication between the UC
systems difficult or impossible to implement.

A system wide shift to one system can be expensive and in
some cases impractical. Thus, in the past, these issues have
been dealt with in a variety of ways:

1. Using multiple clients. For instance, user A would use
client 1 to communicate with users on system 1 and use
client 2 to communicate with users on system 2. One
drawback to this system is that users who only have
access to system 1 still cannot communicate with users
who only have access to system 2 and vice versa.

2. Using a multi-protocol client that is capable of talking to
multiple UC systems. The user still needs an account on
each system.

3. Using a point federation system.

4. Switching the communication mode. That is, if IM is not
possible switching to a telephone call or email.

5. Building a custom link.

However, these alternative methods are sub-optimal as they
typically result in reduced usability of the UC system or in
increasingly unscalable and expensive added infrastructure.

SUMMARY

A hub-based clearing house for interoperability of distinct
unified communication systems is disclosed. According to

10

15

20

25

35

40

45

50

55

60

65

2

one embodiment, a system comprises a database that stores
configuration information for the system; an administrator
module that maintains the configuration information; a fed-
eration server that is connected to a first unified communica-
tions system and a second unified communications system.
The federation server comprises a first translator that trans-
lates a first formatted message received from the first unified
communications system into a common language formatted
message, a second translator that translates the common lan-
guage formatted message into a second formatted message,
and a routing engine that routes the second formatted mes-
sage to the second unified communications system.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included as part of
the present specification, illustrate the presently preferred
embodiment and together with the general description given
above and the detailed description of the preferred embodi-
ment given below serve to explain and teach the principles
described herein.

FIG. 1 illustrates a block diagram of a prior art system for
interconnecting three UC systems using custom and federa-
tion links;

FIG. 2 illustrates a block diagram of a prior art system for
interconnecting four UC systems using custom and federa-
tion links;

FIG. 3 illustrates a block diagram of an exemplary highly
scalable system for interconnecting UC systems, according to
one embodiment;

FIG. 4 illustrates a block diagram of an exemplary hub that
is implemented as cloud services, according to one embodi-
ment;

FIG. 5 illustrates a block diagram of an exemplary hub that
is connected to each of three realms, according to one
embodiment;

FIG. 6 illustrates a flow chart of an exemplary process for
processing messages received from a UC system, according
to one embodiment;

FIG. 7 illustrates a block diagram of an exemplary hub
system for processing real-time media traffic such as audio
and video traffic, according to one embodiment;

FIG. 8 illustrates a flow chart of an exemplary process for
processing a media call by a federation server, according to
one embodiment;

FIG. 9 illustrates a flow chart of an exemplary process
employed by a relay server for adding candidates, according
to one embodiment;

FIG. 10 illustrates a flow chart of an exemplary process
employed by an ICE reactor that is part of a relay server for
establishing ICE connectivity through STUN negotiation,
according to one embodiment;

FIG. 11 illustrates a flow chart of an exemplary process
employed by an ICE reactor for forwarding data packets once
ICE connectivity has been established, according to one
embodiment;

FIG. 12 illustrates a flow chart of an exemplary process
employed by a federation server for terminating a media call,
according to one embodiment;

FIG. 13 illustrates a flow chart of an exemplary process for
transferring a file from an OCS user to a GTalk user, accord-
ing to one embodiment;

FIG. 14 illustrates a flow chart of an exemplary process for
transferring a file from an GTalk user to an OCS user, accord-
ing to one embodiment;

US 9,077,726 B2

3

FIG. 15 illustrates a block diagram that traces an exem-
plary transmission of a message through a hub and domain
gateways, according to one embodiment; and

FIG. 16 illustrates a block diagram that traces an exem-
plary transmission of a message through a hub using Service
(SRV) record publication, according to one embodiment.

FIG. 17 illustrates an exemplary computer architecture that
may be used for the present system, according to one embodi-
ment.

It should be noted that the figures are not necessarily drawn
to scale and that elements of similar structures or functions
are generally represented by like reference numerals for illus-
trative purposes throughout the figures. It also should be
noted that the figures are only intended to facilitate the
description of the various embodiments described herein. The
figures do not describe every aspect of the teachings disclosed
herein and do not limit the scope of the claims.

DETAILED DESCRIPTION
Infrastructures

FIG. 1 illustrates a block diagram of a prior art system for
interconnecting three UC systems using custom and federa-
tion links. UC system 111 is running the UC application
denoted as “UCx” and UC systems 121 and 131 are running
a different UC application denoted as “UCy”. Each UC sys-
tem supports a different domain and is accessible (e.g., instant
messaging, emailing, video conferencing, etc.) by its respec-
tive set of users in the domain. As such, users 112,-112, in
domain A 110 can communicate with one another through
UC system 111. Similarly, users 122,-122; in domain B 120
and users 132,-132, in domain C 130 can access UC systems
121 and 131, respectively, to communicate with other users in
the same domain. Because a user generally interacts with a
UC system through a user client device (“client”), the terms
“user” and “client” are used interchangeably in this disclo-
sure.

Issues arise, for instance, when users in domain B 120 need
to communicate with users in domain A 110 or users in
domain C 130. Without a communications link between users
in two different domains, the users in a domain can only
communicate (through its UC system) with users in the same
domain. Here, as FIG. 1 illustrates, federation link 101 pro-
vides a communications link between UC system 120 and
130. A federation link allows users in different domains to
communicate with each other so long as the associated UC
systems are running the same UC application. In this case,
because UC systems 121 and 131 both run UC application
“UCy”, federation link 101 allows users 122,-122; to com-
municate with users 132,-132,. Whether a federation link is
available depends on the particular UC system.

However, where the UC systems are not running the same
UC application, as between UC system 111 and UC system
121, there is typically no federation link available because a
third-party developer would only provide support for its own
product. Historically, one way to provide a communications
link between UC systems 111 and 121 is to build a custom
link 102, as FIG. 1 illustrates. Custom link 102 includes a
translator that translates messages from UC system type
“UCx” to UC system type “UCy” and specifically between
domains 110 and 120. Because building a custom link is
generally expensive in both time and resources, it is not an
optimal solution.

Furthermore, custom links are not scalable. As FIG. 1
illustrates, even after a custom link 102 is implemented
between domain A 110 and domain B 120, a second custom

10

15

20

25

30

35

40

45

50

55

60

65

4

link 103 would need to be implemented in order for users in
domain A 110 to communicate with users in domain C 130.
Thus, implementing the infrastructure of FIG. 1 requires
three unique communications links.

FIG. 2 illustrates a block diagram of a prior art system for
interconnecting four UC systems using custom and federa-
tion links. As FIG. 2 illustrates, the scaling problem escalates
when four UC systems in four different domains are intercon-
nected using custom and federation links. Federation link 201
between UC systems 211 and 221 provides a communica-
tions support between users in domain A 210 and users in
domain B 220. Federation link 201 is available as both asso-
ciated UC systems 211 and 221 run the same UC application
denoted by “UCx”. Because UC systems 231 and 241 each
run different UC applications (denoted by “UCy” and “UCz”
respectively), the infrastructure of FIG. 2 requires imple-
menting six unique communications links (five custom links
202-206 and one federation link 201) in order for users in any
of the four domains to communicate with one another. Thus,
the complexity of implementing custom links essentially
doubled (from the implementation of FIG. 1 to FIG. 2) by
adding just one UC system running a different UC applica-
tion. As such, infrastructures that employ custom links are not
scalable. There exists a need for a highly scalable system for
interconnecting distinct and independent UC systems in a
federated manner to provide communications support among
users of the UC systems.

FIG. 3 illustrates a block diagram of an exemplary highly
scalable system for interconnecting UC systems, according to
one embodiment. While FIG. 3 only illustrates interconnect-
ing four UC systems 311, 321, 331, and 341, the present
system can interconnect and support any number of UC sys-
tems. The exemplary system of FIG. 3 employs a hub 350 that
includes four connectors 351-354. Although FIG. 3 illustrates
that each connector communicates with one of the four UC
systems 311, 321, 331, and 341, each connector can support
any number of UC systems as long as the connector and the
UC systems utilize or speak the same protocol (e.g., Session
Initiation Protocol (SIP), Extensible Messaging and Presence
Protocol (XMPP), or any other) and are within reach of one
another in terms of network connectivity. Generally, one con-
nector per UC protocol is needed per realm. A realm is the
network region that is reachable from a network interface (to
which the connector is bound).

The hub 350 acts as a central station for translating incom-
ing data from any supported UC system into a common lan-
guage (CL) 355. Depending on the UC application that is
implemented on the receiving UC system, the CL 355 is then
translated into the language that is supported by the receiving
UC system. For instance, a message that is transmitted by UC
system 331 and intended for UC system 341 is first transmit-
ted to the hub 350 via connector 353. The message is then
translated by hub 350 into a CL 355. Because the message is
intended for UC system 341, the CL 355 is then translated
into the language that is recognized by the UC application
denoted by “UCz” and transmitted to UC system 341 via
connector 354.

Similarly, a message that is transmitted by UC system 321
and intended for UC system 341 is first transmitted to the hub
350 via connector 352 and then translated into a CL 355.
Again, the CL 355 is then translated into the language that is
recognized by the UC application denoted by “UCz” and
transmitted to UC system 341 via connector 354. In the case
in which two UC systems are running the same UC applica-
tion, the hub may route a message sent from one UC system
to the other without performing translations. As FIG. 3 further
illustrates, the hub 350 may, for instance, route a message sent

US 9,077,726 B2

5

by UC system 311 to UC system 321 without performing
translations, as indicated by the perforated line.

The hub may also perform direct translation (e.g., from
“UCy” type to “UCz” type) without first translating the mes-
sage into a CL. Direct translation may be used to achieve
higher efficiency and to maintain high fidelity communica-
tions.

Under the exemplary embodiment of FIG. 3, each UC
system thinks that it is communicating with a UC system that
is running the same UC application as itself. Rather than
having to maintain separate federations among each particu-
lar domain, as illustrated in FIGS. 1 and 2, a network admin-
istrator can create a clearing house community that connects
multiple domains through a single hub. One advantage of the
exemplary system of FIG. 3 is its scalability. For instance,
consider adding to the infrastructure of FIG. 3 an additional
UC system that is implemented on a new UC application and
is associated with a new domain. The addition may simply be
implemented by adding the functionality (a one-time job) for
translating between the language used by the new UC appli-
cation and the common language. Depending on the network
configurations, an allow list may also need to be updated (also
a one-time job) to include any existing or added domain that
does not publish an SRV record (discussed more later). Once
added, the new UC system would be able to communicate
with any of the UC systems already connected to the hub and
vice versa. In contrast, adding a new UC system to the infra-
structure of FIG. 2 would require building four additional
custom links (one for each of the pre-existing UC systems).

In addition to solving the scalability issues described
above, the hub or clearing house system illustrated in FIG. 3
also provides for the ability to implement additional features.
For instance, the present hub may provide for preservation of
high fidelity communication. This disclosure contemplates
employing a common language (CL) format that provides for
full translation from one UC language format to another
without unnecessary or unavoidable loss of information. This
may be accomplished by translating the UC formatted mes-
sage into a CL formatted message such that no data is dis-
carded until the CL. formatted message is translated into the
UC format that is recognized by the receiving UC system.
Unlike using a lowest common denominator approach to
defining the CL in which all communications are lowered to
the UC language format with the least common functionality,
employing a CLL format that provides for full translation pre-
serves high fidelity communication between UC systems.

Consistent with one embodiment, the CL is a superset
language that supports features (e.g., fields) of all supported
UC language formats. For instance, the CL. may contain some
or all the fields of a supported UC language format. Also, the
CL may be an evolving language wherein new syntax (head-
ers) can be added to accommodate any new features that
become available in supported UC systems. The new syntax
may then be used by all the translators to translate a CL
formatted message into a message of respective UC format
that supports these new features. In one embodiment, an
appropriate CL format is generic SIP.

The hub system also allows administrators to set and
enforce policies by virtue of it being a hub for all inter-domain
communication. When a UC system in one domain commu-
nicates directly (without going through a hub) with a UC
system in another domain, administrators of each domain can
only control incoming and outgoing messages locally. How-
ever, if the UC systems communicate with each other through
a hub, the hub allows administrators of each UC system to
access the part of the hub that applies to them so that they can
administer policies that are not possible to administer locally.

40

45

55

6

For instance, an administrator may administer one or more
policies through the hub to allow a user in one domain to make
his status appear as available to only certain members of
another domain. Such granular control in setting policies is
generally not available to administrators of domains intercon-
nected using just federation and custom links.

Hub

FIG. 4 illustrates a block diagram of an exemplary hub that
is implemented as cloud services, according to one embodi-
ment. That is, a hub does not necessarily run on a particular
server installation or from any particular location. A hub may
be broken into four main components: an administration
module (AM), a database (DB), a federation server (FS), and
aload balancer (LLB). While a hub may be implemented using
a single computer, FIG. 4 illustrates an exemplary embodi-
ment in which the hub is implemented using several comput-
ers, each computer carrying out a specific function, and net-
worked together to create a single installation.

Hub 400 includes an administration module implemented
on computer 401. An administration module (AM) is a soft-
ware program that allows hub system administrators to con-
figure the hub to provide UC systems with access to the hub.
There is typically one AM for each installation. The AM
configures the hub by creating and updating a data store in a
database (DB) implemented on computer 402. The data store
contains the information that is used by the federation servers
(FS’s) to perform their functions. Each of the FS’s may be
implemented on separate computers 404, .. FIG. 4 further
illustrates an optional load balancer 403 that manages and
directs communications traffic from UC systems to the FS’s
to make efficient use of the available system resources.

Some of the configurable parameters and desired settings
of the AM are as follows:

1. Administrator Settings

a. In the administration settings the hub administrator can
configure the hub to allow for public federation (e.g.,
allowing the hub to connect to public instant messenger
systems such as Google Chat, AIM, and Yahoo Messen-
ger).

b. A default setting allows federation even if no policy
applies to a message. This can be reversed by the admin-
istrator so that federation is allowed only if a policy
applies to a message.

2. Realms

a. A physical network card in the FS machine may be
configured to support one or more connectors, one con-
nector per protocol. A connector is created by configur-
ing a physical network card to use a supported protocol,
such as SIP or XMPP or both, and is described in further
detail below.

3. Private Keys and Certificates

a. Private and public keys may be configured within the hub
so that the FS can communicate with UC systems
securely. The AM allows private keys to be created for
the hub by creating a self-signed key and then creating a
certificate signing request which is sent to a certification
authority (CA) such as Verisign or Entrust. The reply to
the request is imported back into the hub, at which point,
the hub can send its public certificate to all the connected
UC systems.

b. The AM acquires public certificates for all domains it
would communicate with. The AM fetches the certifi-
cate for a domain present in the data store provided the
hub is able to communicate over TLS with this domain.

4.

US 9,077,726 B2

7

Federation Servers

a. The AM allows administrators to create, edit, and delete

5.
a.

servers after the server has been physically built with the
proper hardware. The proper settings for creating a fed-
eration server depend on the number of network cards
installed on the server. Each network card may be con-
figured to use each type of connector that is used within
the realm that it is associated or may serve as a spare or
may be used for other communication purposes (e.g., to
DB or to the AM). A connector typically supports a
single UC protocol (e.g., SIP or XMPP). However, a
connector may have multiple transports configured for
its UC protocol (e.g., a SIP connector configured to
support SIP over TLS and SIP over TCP and an XMPP
connector configured to support XMPP over TCP and
XMPP over TLS).

. The administrator must also configure private keys and

corresponding public keys and certificates so the AM
can communicate internally with each FS in the instal-
lation securely. The AM and each FS communicate over
TLS which requires that the AM and each FS have a
private key and that the corresponding certificates (pub-
lic keys) are available to the other side. This enables the
AM and each FS to communicate internally over TLS.
Domains
The following information for each domain that will be
communicating through the hub are added to the data-
base:
i. Domain name (e.g., UC4.acme.com)
ii. Whether the Domain is public or not
iii. One of the following methods of acquiring the IP

address is required:

1. Use DNS SRV record to fetch the IP address

2. Use the FQDN to fetch the IP address

3. Input the IP Address directly

. Policies
. Each policy has a name and action flags (e.g., allow,

deny). There may be six types of messages that flow thru

the hub: buddy invite, presence, chat, audio call, video

call, and file transfer. The criteria for the policy can be
specified in a structured fashion using lists and attributes
of addresses involved in the address.

i. Policy actions

1. Buddy list invites can be allowed or denied.

(A buddy list invite (or SUBSCRIBE as it is called
in SIP/XMPP) is sent from user A to user B via
the hub when user A adds user B to his contact
(buddy) list)

2. Instant Messages can be allowed or denied
3. Presence can be allowed or denied
4. Audio calls
5. Video calls
6. File transfer

. Policy lists: System administrators create lists in the
database which can be referenced in the policy rules.
Each list may be used by the policy rules described
above. The following are the types of lists that can be
created by the administrators:
1. List of Addresses
2. List of Domains
3. List of Groups (e.g., Using Microsoft Active Direc-

tory)

iii. Criteria: policy criteria are specified in each policy.
These criteria determine when a policy is applied to a
message (specifically the source and destination
addresses) being processed. Up to five criteria can be
specified and each criterion applies to source, desti-

=

i

10

20

25

30

35

40

45

50

55

60

8

nation, both or either address in the message. The
operation specified on the address(es) may be one of:
is-internal, is-external, is-public, is-present-in-list or
the negation of one of them.

7. Directory (For Microsoft Active Directory Functional-
ity)

a. Administrator can populate users and groups in the data
store by having the hub connect to an active directory
and download the users and groups, which eliminates
duplication of data already present. Once these users and
groups are downloaded, the administrator can reference
them in the policies as described above.

Once the AM and the connected UC systems have been prop-
erly configured, individual users on a configured UC system
can connect to other users on any other properly configured
(remote or local) UC system.

As mentioned earlier, the AM configures the hub by creat-
ing and updating a data store in a database (DB) implemented
on computer 402. In addition to storing configuration data
received from the AM, the DB also stores data regarding local
administrators (administrators of UC systems connected to
the hub), local users (users in the domains of associated UC
systems), and FS’s. In general, because only the AM can
directly manipulate data in the DB, local administrators who
wish to update the DB data would have to log into the AM to
do so. Local user information that may be stored in the DB
include usage and audit logging information. The DB may be
implemented as a relational data base.

FIG. 4 illustrates that each of the FS’s may be implemented
on separate computers 404, . The computers 404, , are sub-
stantially identical to one another regarding their physical
hardware configurations. Each FS computer typically has
three network cards installed. However, more than or less than
three network cards per computer are also contemplated.
Furthermore, the software applications installed on each of
the computers 404, _, are configured in almost an identical
fashion to one another except that each computer is given a
unique identification value.

FIG. 5 illustrates a block diagram of an exemplary hub that
is connected to each of three realms, according to one
embodiment. Each of the computers 501-503 has three net-
work cards (C1, C2, and C3) installed. In order for each FS to
provide access to each of the three realms, each network card
ofa FS is connected to a different realm. A realm is a network
region or network segment that is reachable through a par-
ticular network card. For instance, in an enterprise network
there is often an internal network (e.g., intranet) and an exter-
nal network (e.g., Internet). A computer sitting in the demili-
tarized zone (DMZ) of the enterprise may need a network
card to access the intranet (e.g., realm 1) and another network
card to access the Internet (e.g., realm 2). Any number of
realms may exist. Another example of a realm is a private
network that is accessible through a private link (e.g., remote
branch office).

A FS has two main components: (1) instances of connec-
tors, and (2) the DP Application Logic (herein “engine™). A
connector is an object that includes both a hardware aspect
and a software aspect. The hardware aspect includes a physi-
cal network card connection that provides a physical pathway
for data to flow into and out of a FS machine. The software
aspect of a connector, in its basic form, is comprised of (1) a
listening loop that listens on the physical connection and
waits for incoming data, and (2) a function that can be called
by the FS when data is ready to be sent out from a network
card of the FS.

FIG. 6 illustrates a flow chart of an exemplary process for
processing messages received from a UC system, according

US 9,077,726 B2

9

to one embodiment. The operations begin with the connectors
of the FS continuously listening (at 601) for an on-the-wire
message, such as a SIP or XMPP message. If a message is
detected, a protocol handler is called (at 602) to translate the
detected on-the-wire message into an internal memory rep-
resentation of the message (IMRM). After translating into an
IMRM, the hub message manager (HMM) uses a policy
enforcement engine to check the IMRM against policies set
up by the administrators (at 603) and decides whether the
IMRM should be allowed. If the IMRM is found not to be
allowed, an error message is sent back to the incoming con-
nector which received the message and the IMRM is dis-
carded (at 604). The error message, which may include infor-
mation as to why the message was not allowed, is relayed
back to the originating UC through the incoming connector.
On the other hand, if the IMRM is found to be allowed, the
HMM extracts the destination and source addresses as well as
the destination and source UC formats from the IMRM (at
605). Using the extracted addresses, the HMM uses a routing
engine to determine the destination route for the IMRM (at
606). The routing engine also adds necessary information to
the IMRM to ensure the message is ready for the destination
domain. For instance, the added information may include
routing headers that allow SIP and XMPP outgoing connec-
tors to route the message to the appropriate UC systems. Next,
the HMM processes the IMRM using a translation engine (at
607). The translation engine first checks the data store to see
if direct translation is available. If so, direct translation is
used. If not, the translation engine translates the IMRM into
the CL format and then translates the CL. formatted message
into the destination UC format. The translation engine uses
the formats that were extracted at 605. After translation into
the destination UC format, the message is translated into an
on-the-wire format and then sent out to the destination UC
system via an outgoing connector (at 608). The outgoing
connector is determined by the routing engine at 606 and it
uses the realm and the UC protocol of the destination UC
system. Thus, connector is used for both sending and receiv-
ing messages.

FIG. 7 illustrates a block diagram of an exemplary hub
system for processing real-time media traffic such as audio
and video traffic, according to one embodiment. As FIG. 7
illustrates, clients 711 and 721 communicate with one another
through their respective UC systems 712 and 722 and hub
700. Hub 700 includes a federation server (FS) 734, a relay
server (RS) 733, and a transcoder 735. While FS 734 pro-
cesses messages received from UC systems (e.g., UCx 712
and UCy 722), such as illustrated in FI1G. 6, RS 733 processes
media traffic such as audio and video traffic between clients
711 and 721. For instance, if FS 734 determines that a media
call initiate or INVITE message has been received, FS 734
sends control signals to RS 733 to engage and control certain
operations of RS 733. These control signals include start-call,
end-call, and caller/callee information such as media end-
point candidates and media codecs that are available. If RS
734 determines that clients 711 and 721 have at least one
common media codec that is available to each client, RS 734
relays the media traffic between clients 711 and 721. The
media traffic originating from client 711 would flow as fol-
lows:

client 711—=RS 733—client 721
Similarly, media traffic originating from client 721 would
flow as follows:

client 721—=RS 733—client 711

Ifthere is no common codec that is available to clients 711
and 721, RS 733 engages transcoder 735 to transcode the
media traffic from one codec format (e.g., format used by

10

15

20

25

30

35

40

45

50

55

60

65

10

client 711) to another codec format (e.g., format used by
client 721) and vice versa. For instance, if transcoding is
needed, media traffic originating from client 711 would flow
as follows:

client 711—-RS 733—Transcoder 735—RS 733—client
721
Similarly, media traffic originating from client 721 would
flow as follows:

client 721—RS 733—Transcoder 735—RS 733—client
711
RS 733 engages transcoder 735 via control signals that, for
instance, tell the transcoder 735 to set up and tear down the
media endpoints (e.g., RTP and RTCP ports) that were set up
at the transcoder for sending and receiving media to/from RS
733.

Although load balancers are not shown in FIG. 7, this
disclosure contemplates that a load balancer may be used as
an intermediary component of hub 700 for managing and
directing communications traffic between UC systems 712
and 722 and FS 734. This disclosure also contemplates
employing a load balancer as an intermediary component of
hub 700 for managing and directing media traffic between
clients 712 and 722 and RS 733. This disclosure also contem-
plates employing a load balancer as an intermediary compo-
nent of hub 700 for managing and directing control signals
traffic between transcoder 735 and RS 733. This disclosure
also contemplates employing a load balancer as an interme-
diary component of hub 700 for managing and directing
media traffic to multiple relay server nodes acting as a single
logical relay server RS 733. The use of load balancers allows
hub 700 to make efficient use of the available system
resources and to be highly scalable.

FIG. 8 illustrates a flow chart of an exemplary process for
processing a media call by a federation server, according to
one embodiment. The process begins (at 801) when the fed-
eration server (FS) receives a media call initiate or INVITE
message from a calling client (“caller”). The initiate message
may or may not include the caller candidates. Caller candi-
dates are [P addresses and ports at which the caller can receive
media traffic. If the caller candidates are not included, they
may be sent in a separate message (not shown in FIG. 8).
Next, the FS creates a call-state object and also parses the
caller candidate information (at 802). If the caller and the
intended client for receiving the call (“callee”) employ dif-
ferent UC systems, the message may need to be translated to
a common language (CL) format. A call-state object is main-
tained for each call started and is deleted when the call is hung
up.
Next, the FS sends all caller candidates to the RS via an
add-candidate message (at 803). (See FIG. 9). The FS waits
for the RS to return RS candidates (at 804). RS candidates are
IP addresses and ports at which the RS can receive data from
clients. Because the RS receives data from both a caller and a
callee, there are separate RS candidates for the caller and
callee. After the FS receives the RS candidates from RS, the
FS separates the RS candidates for the caller and the callee
and saves them in the call-state object (at 805). Next, the FS
collects the RS candidates for callee to include in an initiate
message that is sent to the callee (at 806) through the callee’s
UC system. If the caller and the callee employ different UC
systems, the message may need to be translated from a CL.
format to the language format that is recognized by the
callee’s UC system prior to being sent. Typically, a response
or acknowledgement message is sent back by the callee’s UC
system after receiving the message (at 807). When the callee
receives the initiating message, the callee sends to the caller
(e.g., callee—callee UC—FS—-caller UC—caller) a ringing

US 9,077,726 B2

11

message (at 808). Again, if the caller and the callee employ
different UC systems, the message may need to be translated
to an appropriate format as described earlier in this disclo-
sure.

The FS waits for the callee to answer the call (at 809). After
the callee answers the call, the FS parses the answer to obtain
the callee candidates, which are then sent to the RS. Callee
candidates are IP addresses and ports at which the callee can
receive media traffic. The FS also sends an accept message
(translated if appropriate) to the caller (at 810). The accept
message signals to the caller that the callee has accepted the
call. The accept message also contains the RS candidates for
the caller. After receiving these RS candidates, the caller may
use them to establish connectivity thru ICE negotiation, such
as described in FIG. 10.

Next, the FS waits for the RS to return final candidates (at
811). Final candidates are IP addresses and ports are the best
remote candidates for transferring data between the RS and
the caller/callee. The RS determines the final candidates by
performing ICE connectivity checks (e.g., exchanging STUN
messages) with both the caller and the callee. For instance, the
RS would use different pairs of callee candidates and RS
callee candidates to exchange STUN messages to determine
the final callee and RS callee candidates. Similarly, the RS
would use different pairs of caller candidates and RS caller
candidates to exchange STUN messages to determine the
final caller and RS caller candidates. After the RS returns the
final candidates, the FS may send the final RS callee candi-
date to the callee if the callee protocol expects it (at 812).
Finally, the call is established (at 813).

FIG. 9 illustrates a flow chart of an exemplary process
employed by a relay server for adding candidates, according
to one embodiment. The process begins when relay server
(RS) receives an add-candidate message from the federation
server (FS) for a call component (at 901). A call has multiple
components such as audio-rtp, audio-rtcp, video-rtp and
video-rtcp. Each component carries a certain aspect of media
traffic. For instance, audio-rtp carries audio packets and
video-rtp carries video packets. Rtcp is for control of rtp. The
process applies to all components of a call. An add-candidate
message is a request for the RS to return (to the FS) RS
candidates for a caller and a callee and may include the
following: call-id, caller address (e.g., I[P address and port per
candidate), callee address, and caller UC system (e.g., OCS or
GTalk).

Next, the RS sets up an ICE reactor for each local RS
candidate (at 902). An ICE reactor performs at least two
functions. One function is to establish ICE connectivity
through STUN negotiaion. After connectivity is established,
a second function is to forward data packets between two
peers. Next, the RS determines whether a call object is present
for the call-id associated with the add-candidate message (at
903). If no call object is present, the RS creates a call object
for the call-id (at 904). Next, the RS adds the candidates that
are provided in the message to the call object (at 905). The RS
then creates RS candidates for each of the caller and the callee
(at 906) and sends them to the FS (at 907).

Next, the RS sends STUN binding requests through RS
caller candidates and RS callee candidates to caller candidat-
des and callee candidates, respectively (at 908). Next, the RS
determines whether transcoding is required (at 909).
Transcoding may be required if there exists no common
media codec thatis used by both caller and callee. Iftranscod-
ing is not required, the RS sets up packet forwarding between
the two local ports that have been allocated for the caller and
the callee (at 912). For instance, if port A is used by the caller
and port B is used by the callee, the RS forwards packets from

10

15

20

25

30

35

40

45

50

55

60

65

12

A to B and vice versa. If transcoding is required, the RS
allocates a transcoding channel and two additional ports for
(e.g., port C for sending traffic to transcoder and port D for
receiving traffic from transcoder) for communicating with the
transcoder (at 910). The RS then sets up packet forwarding so
that packets go through the transcoder (at 911). For instance,
if transcoding is required, then the packet forwarding through
the ports A to D would be as follows:

A—C—transcoder—D—B and vice versa.

FIG. 10 illustrates a flow chart of an exemplary process
employed by an ICE reactor for establishing ICE connectivity
through STUN negotiation, according to one embodiment.
An ICE reactoris set up for each local port that is allocated for
a specific call. The ICE reactor (“reactor”) waits for a STUN
binding request/response (“STUN message™) (at 1001).
When a STUN message arrives to the port, the ICE reactor (or
rather RS) knows which call it is for and associates it with
remote (A) and local (B) candidates (at 1002). The reactor
then determines whether the STUN message is valid (at
1003). The determination may be made based on industry
standards, such as described in RFC5389 published by the
Internet Engineering Task Force (IETF). If the STUN mes-
sage is not valid, the reactor sends an error response back to
the originator of the STUN message if the message is a
request or does nothing if the message is a response (at 1004).

Ifthe STUN is valid, the reactor then determines whether it
is aresponse or a request (at 1005). If the STUN is a response,
the reactor determines whether remote candidate A is already
writable (at 1006). If remote candidate A is already writable,
the reactor proceeds to 1008. Otherwise, the reactor marks
remote candidate A as writable (at 1007) before proceeding to
1008. If the STUN is a request, the reactor determines
whether remote candidate A is already readable (at 1009). If
remote candidate A is already readable, the reactor proceeds
to 1011. Otherwise, the reactor marks remote candidate A as
readable (at 1010) before proceeding to 1011. At 1011, the
reactor generates a STUN request for remote candidate A that
is sent via local candidate B.

At 1008, the reactor determines whether remote candidate
A is both readable and writable. If remote candidate A is both
readable and writable, the reactor marks remote candidate A
as read-writable (at 1012), indicating that the candidate is
ready to be used for communication, before proceeding to
1013. Otherwise, the candidate is not ready to be used for
communication and the reactor proceeds back to 1001. At
1013, the reactor determines whether the current candidate is
preferred over the best remote candidate. For instance, the
reactor may compare the current candidate’s preference num-
ber with that of the best remote candidate (e.g., candidate
associated with highest preference number). If the current
candidate’s preference number is higher than (e.g., preferred
over) that of the best remote candidate, the reactor makes the
current candidate the best remote candidate.

FIG. 11 illustrates a flow chart of an exemplary process
employed by an ICE reactor for forwarding data packets once
ICE connectivity has been established, according to one
embodiment. The ICE reactor (“reactor”) waits for data (e.g.,
rtp or rtep) packets (at 1101). The ICE reactor is set up for
each local port that is configured for a specific call. Once a
data packet arrives at the port, the ICE reactor (or rather RS)
knows which call it is for and based on that information, the
ICE reactor finds the peer candidate (PC) (at 1102). Next, the
reactor determines whether the data packet is valid (at 1103).
The determination may be made based on industry standards
regarding whether the packet is a valid rtp/rtcp packet. If the
data packet is determined to be invalid, the data packet is
dropped (at 1104). Ifthe data packet is determined to be valid,

US 9,077,726 B2

13

the reactor then determines whether a transcode channel
exists (at 1105). If a transcode channel exists, the reactor
locates the transcoding peer (TP) and forwards the data
packet to the peer TP (at 1106). Ifa transcode channel doesn’t
exist, the reactor forwards the data packet to the PC (at 1107).

FIG. 12 illustrates a flow chart of an exemplary process
employed by a federation server for terminating a media call,
according to one embodiment. The process begins when the
federation server (FS) receives a media call terminate mes-
sage from a caller or a callee (“terminator”) (at 1201). In
response, the FS sends a hang-up message to the relay server
(RS) (at 1202). Next, the FS sends the terminate message to
the “terminatee” (e.g., the other party to the call who did not
originate the terminate message) (at 1203). If the terminator
and the terminatee employ different UC systems, the message
may need to be translated appropriately as described earlier in
this disclosure (e.g., terminator UC format<— common a
guage <+ terminate format) prior to being sent. In response
to the terminate message, the terminatee sends an acknowl-
edgement message back to the terminator through the FS (at
1204). Again, appropriate translation of the message by the
FS may be necessary. After receiving the acknowledgement
message, the terminator finishes the call tear down sequence
and the call is terminated (at 1205).

FIG. 13 illustrates a flow chart of an exemplary process for
transferring a file from an OCS user to a GTalk user, accord-
ing to one embodiment. File transfer is handled by a hub and
a file share server (FSS) as follows. When an OCS sending
user (OCS SU) wants to send a file, a request is sent to the hub
(at 1301) and processed by a FS as illustrated in FIG. 6. The
hub relays the request to the receiving GTalk user (GTalk
RU). Once the GTalk RU accepts the request, an acceptance
message is sent back through the hub to the OCS SU (at
1302). The acceptance message is again processed by a FS as
illustrated in FIG. 6. Next, both the OCS SU and the GTalk
RU connect to the FSS via TCP (at 1303 and 1309, respec-
tively). TCP is the common protocol over which UC specific
protocols such as TFTP and HTTP are implemented.

After OCS SU connects successfully to the FSS, the FSS
sends to the OCS SU a signal indicating the protocol that will
be used (e.g., VER MSN_SECURE_FTP) (at 1304). The
OCS SU replies to the FSS with the same string indicating the
protocol (at 1305). After GTalk RU connects successfully to
the FSS, the GTalk RU sends to the FSS an HTTP GET to
request the file (at 1310). In response, the FSS sends an HTTP
Response (at 1311).

The FSS sends the OCS SU a USR signal for authentication
(at 1306). If the USR signal is valid, the OCS SU sends back
to the FSS a FIL signal that indicates the file size (at 1307).
Next, the FSS sends a TFR signal to the OCS SU (at 1308).
Next, the OCS SU sends the file to the FSS while the FSS
sends the file to the GTalk RU (at 1312). Because the FSS
knows the file size, the FSS knows when a file has finished
transferring and sends a BYE signal to the OCS SU indicating
acomplete transfer (at 1313). Next, the OCS SU sends a MAC
signature to the FSS to check the transfer (at 1314). Finally,
the OCS SU closes the connection with the FSS (at 1315) and
the FSS closes the connection with the GTalk RU (at 1316).

FIG. 14 illustrates a flow chart of an exemplary process for
transferring a file from an GTalk user to an OCS user, accord-
ing to one embodiment. File transfer is handled by a hub and
a file share server (FSS) as follows. When a GTalk sending
user (GTalk SU) wants to send a file, a request is sent to the
hub (at 1401) and processed by a FS as illustrated in FIG. 6.
The hub relays the request to the receiving OCS user (OCS
RU). Once the OCS RU accepts the request, an acceptance
message is sent back through the hub to the GTalk SU (at

10

15

20

25

30

40

45

50

55

60

65

14

1402). The acceptance message is again processed by a FS as
illustrated in FIG. 6. Next, both the GTalk SU and the OCS
RU connect to the FSS via TCP (at 1403 and 1409, respec-
tively). TCP is the common protocol over which UC specific
protocols such as TFTP and HTTP are implemented.

After GTalk SU connects successfully to the FSS, the FSS
sends to the GTalk SU an HTTP GET to request the file (at
1410). In response, the GTalk SU sends an HTTP Response
(at 1411). After OCS RU connects successfully to the FSS,
the OCS RU sends to the FSS a signal indicating the protocol
that will be used (e.g., VER MSN_SECURE_FTP) (at 1404).
The FSS replies to the OCS RU with the same string indicat-
ing the protocol (at 1405).

The OCS RU sends a USR signal to the FSS for authenti-
cation (at 1406). If the USR signal is valid, the FSS sends back
to the OCS RU a FIL signal that indicates the file size (at
1407). Next, the OCS RU sends a TFR signal to the FSS (at
1408). Next, the GTalk SU sends the file to the FSS while the
FSS sends the file to the OCS RU (at 1412). Because the OCS
RU knows the file size, the OCS RU knows when a file has
finished transferring and sends a BYE signal to the FSS
indicating a complete transfer (at 1413). Next, the FSS sends
a MAC signature to the OCS RU to check the transfer (at
1414). Finally, the FSS closes the connection with the OCS
RU (at 1415) and the GTalk SU closes the connection with the
FSS (at 1316).

Local Domain Configurations

In order for UC systems to communicate with each other
through a hub, the local domain administrators of the UC
systems need to properly configure their systems so that com-
munications traffic intended for a receiving UC system is
directed to the hub. For instance, in a clearinghouse or hub
implementation, a domain gateway is typically implemented.
The domain gateway is a component that allows the UC
system to communicate with the hub. In order for a UC
system to communicate with the hub, both the domain gate-
way and the UC system need to be configured properly.

FIG. 15 illustrates a block diagram that traces an exem-
plary transmission of a message through a hub and domain
gateways, according to one embodiment. Assume user 1511
wants to send a message to user 1521. User 1511 first sends
the message to the local UC system 1512. The message is then
forwarded to domain gateway 1513 (e.g., Access Edge Server
(AES), Same Time Gateway, etc) which maintains an allow
list 1540 of all the domains the local domain administrator
1514 has allowed its users to have access to. This way, local
domain administrators have control over which domains its
users can communicate with. Additionally, the allow list can
be used allow or disallow communication with federated
domains. Another useful function of the allow list is to pro-
vide UC address information for federated domains.

In order to route communications traffic that is intended for
domain “y.com” (1520) to the hub 1530, the allow list 1540,
specifically the FQDN field in the entry for domain “y.com”
(1520), needs to include the address of the hub 1530 (“hu-
b_addr”). Furthermore, the hub 1530 must also be properly
configured by the hub administrator, who must add both
domains (“x.com” and “y.com”) to the hub 1530 through the
AM 1531. Once the hub administrator has configured the AM
1531 and the AM 1531 has updated the data store in the DB
1532, the hub 1530 is ready for use and all traffic to and from
“x.com” to “y.com” will flow through the hub 1530.

The routed traffic includes the message that was sent by
1511. After being processed by the hub 1530, the message is
forwarded to domain gateway 1523, then to UC system 1522,

US 9,077,726 B2

15
and finally to user 1521. As FIG. 15 illustrates, the FQDN
field in the entry for domain “x.com” in allow list 1550 also
needs to include the address of the hub 1530 (“hub_addr™). As
such, traffic intended for the domain “x.com” (1510) is also
routed through the hub 1530.

FIG. 16 illustrates a block diagram that traces an exem-
plary transmission of a message through a hub using SRV
record publication, according to one embodiment. Assume
user 1611 wants to send a message to user 1621. User 1611
first sends the message to the local UC system 1612. Next, the
message is sent to domain gateway 1613 and is intended to be
transmitted to domain “y.com” (1620). However, because the
local administrators 1614 and 1624 have published the SRV
records for domains “x.com” (1610) and “y.com” (1620),
respectively, with the FQDN fields set as “hub_addr”, as
shown in SRV record publication 1640, all communications
traffic that is intended for domains “x.com” and “y.com” 1620
will be routed to the hub 1630. In order for the hub 1630 to
handle the routed traffic, both domains (“x.com” and
“y.com”) need to be added to the hub 1630 through the AM
1631. As FIG. 16 illustrates, the routed traffic includes the
message that was sent by 1611. After being processed by the
hub 1630, the message is forwarded to the domain gateway
1623, then to the UC system 1622, and finally to user 1621.

SRV records enable a domain (e.g., foo.com) to become
part of the hub without asking other domains to configure
their gateways/allow lists to add the domain in order to direct
traffic to the hub. Accordingly, using SRV records for mul-
tiple protocols along with the support for those multiple pro-
tocols in the hub enable a domain (e.g., foo.com) to appear as
different UC systems. For instance, by publishing an SRV
record for the respective protocol, foo.com may appear as an
OCS system to other OCS partners, and at the same time,
foo.com may appear as a XMPP system to XMPP partners.

The SRV record requirement varies among UC systems
based on the UC protocol used by the UC system or even
within that UC protocol a vendor may have a specialized SRV
record requirement. A feature of the hub is that the adminis-
trator ofa domain (e.g., “y.com”) can publish SRV records for
all the UC system types that can federate (via the hub) with
the domain (e.g., “y.com”). All these SRV records would
point to the address for the hub (e.g., “hub.addr”). For
instance, if “x.com” is an OCS UC system, then it would look
up _sipfederationtls._tcp.y.com to federate with “y.com”. If
“z.com” is a Jabber UC system, then it would look up _xmpp-
server._tcp.y.com to federate with “y.com.” While “y.com” is
a certain UC type (e.g., Sametime) but because of the SRV
record publication and the hub, “y.com” appears as an OCS
UC system to “x.com” and as a Jabber UC system to “z.com”.

Each of the features and teachings disclosed herein can be
utilized separately or in conjunction with other features and
teachings to provide a method for reducing the order of sys-
tem models exploiting sparsity. Representative examples uti-
lizing many of these additional features and teachings, both
separately and in combination, are described in further detail
with reference to the attached figures. This detailed descrip-
tion is merely intended to teach a person of skill in the art
further details for practicing preferred aspects of the present
teachings and is not intended to limit the scope of the claims.
Therefore, combinations of features disclosed above in the
detailed description may not be necessary to practice the
teachings in the broadest sense, and are instead taught merely
to describe particularly representative examples of the
present teachings.

In the description above, for purposes of explanation only,
specific nomenclature is set forth to provide a thorough
understanding of the present disclosure. However, it will be

20

30

40

45

16

apparent to one skilled in the art that these specific details are
not required to practice the teachings of the present disclo-
sure.

Some portions of the detailed descriptions above are pre-
sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk, including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys-
tem bus.

The algorithms presented herein are not inherently related
to any particular computer or other apparatus. Various general
purpose systems, computer servers, or personal computers
may be used with programs in accordance with the teachings
herein, or it may prove convenient to construct a more spe-
cialized apparatus to perform the required method steps. The
required structure for a variety of these systems will appear
from the description below. It will be appreciated that a vari-
ety of programming languages may be used to implement the
teachings of the disclosure as described herein.

Moreover, the various features of the representative
examples and the dependent claims may be combined in ways
that are not specifically and explicitly enumerated in order to
provide additional useful embodiments of the present teach-
ings. It is also expressly noted that all value ranges or indica-
tions of groups of entities disclose every possible intermedi-
ate value or intermediate entity for the purpose of original
disclosure, as well as for the purpose of restricting the
claimed subject matter. It is also expressly noted that the
dimensions and the shapes of the components shown in the

US 9,077,726 B2

17

figures are designed to help to understand how the present
teachings are practiced, but not intended to limit the dimen-
sions and the shapes shown in the examples.

FIG. 17 illustrates an exemplary computer architecture that
may be used for the present system, according to one embodi-
ment. The exemplary computer architecture may used for
implementing one or more components described in the
present disclosure including, but not limited to, a hub system,
a load balancer, a database, an administrator module, a fed-
eration server, a user client, a relay server, a transcoder, a file
sharing server, and a UC system. One embodiment of archi-
tecture 1700 comprises a system bus 1720 for communicating
information, and a processor 1710 coupled to bus 1720 for
processing information. Architecture 1700 further comprises
a random access memory (RAM) or other dynamic storage
device 1725 (referred to herein as main memory), coupled to
bus 1720 for storing information and instructions to be
executed by processor 1710. Main memory 1725 also may be
used for storing temporary variables or other intermediate
information during execution of instructions by processor
1710. Architecture 1700 may also include a read only
memory (ROM) and/or other static storage device 1726
coupled to bus 1720 for storing static information and instruc-
tions used by processor 1710.

A data storage device 1725 such as a magnetic disk or
optical disc and its corresponding drive may also be coupled
to architecture 1700 for storing information and instructions.
Architecture 1700 can also be coupled to a second I/O bus
1750 via an /O interface 1730. A plurality of I/O devices may
be coupled to /O bus 1750, including a display device 1743,
an input device (e.g., an alphanumeric input device 1742
and/or a cursor control device 1741).

The communication device 1740 allows for access to other
computers (e.g., servers or clients) via a network. The com-
munication device 1740 may comprise one or more modems,
network interface cards, wireless network interfaces or other
interface devices, such as those used for coupling to Ethernet,
token ring, or other types of networks.

A hub-based clearing house for interoperability of distinct
unified communication systems is disclosed. Although vari-
ous embodiments have been described with respect to specific
examples and subsystems, it will be apparent to those of
ordinary skill in the art that the concepts disclosed herein are
not limited to these specific examples or subsystems but
extends to other embodiments as well. Included within the
scope of these concepts are all of these other embodiments as
specified in the claims that follow.

We claim:

1. A system, comprising:

a database that stores configuration information for the

system,

an administrator module that maintains the configuration

information; and

a federation server that is connected to a first domain and

a second domain, the federation server comprising,

a first translator that translates a first formatted message
received from a first gateway of the first domain into a
common language formatted message,

a second translator that translates the common language
formatted message into a second formatted message,
and

a routing engine that routes the second formatted mes-
sage to a second gateway of the second domain,
wherein the federation server allows the first domain
that runs a first type of unified communications appli-
cation to appear running a second type of unified
communications application that federates with the

10

15

20

25

30

35

40

45

50

55

60

65

18

second domain, wherein the second domain runs the
second type of unified communications application.

2. The system of claim 1, wherein the common language
formatted message contains at least one field in the first for-
matted message.

3. The system of claim 1, wherein the common language
formatted message contains at least one field in the second
formatted message.

4. The system of claim 1, wherein the format of the com-
mon language formatted message is generic Session Initia-
tion Protocol (SIP).

5.The system of claim 1, wherein the administrator module
sets enforcement policies for determining whether messages
received by the federation server are acceptable.

6. The system of claim 5, wherein the federation server
further comprises a policy enforcement engine that applies
the enforcement policies to the first formatted message.

7. The system of claim 1, further comprising a load bal-
ancer that manages and directs communications traffic to the
federation server to make efficient use of available system
resources.

8. The system of claim 1, further comprising a relay server
that relays real-time media communications traffic between
the first domain and the second domain.

9. The system of claim 1, further comprising a transcoder
that transcodes real-time media communications traffic
between the first domain and the second domain.

10. The system of claim 1, further comprising a file sharing
server that relays file transfer data between the first domain
and the second domain using dissimilar file transfer proto-
cols.

11. The system of claim 1, wherein the federation server is
connected to the first domain through a first connector and is
connected to the second domain through the first connector or
through a second connector.

12. The system of claim 11, wherein each of the first and
second connectors are configured to connect to multiple Uni-
fied Communications (UC) systems.

13. The system of claim 1, wherein only the administration
module has direct access to the database.

14. The system of claim 1, wherein the database is a rela-
tional database.

15. A method, comprising:

connecting a first domain and a second domain through a

federation server;

receiving into the federation server a first formatted mes-

sage from a first gateway of the first domain;
translating the first formatted message into a common lan-
guage formatted message;

translating the common language formatted message into a

second formatted message; and

routing the second formatted message from the federation

server to a second gateway of the second domain,
wherein the federation server allows the first domain that
runs first type of unified communications application as
running a second type of unified communications appli-
cation that federates with the second domain, wherein
the second domain runs the second type of unified com-
munications application.

16. The method of claim 15, wherein the common language
formatted message contains at least one field in the first for-
matted message.

17. The method of claim 15, wherein the common language
formatted message contains at least one field in the second
formatted message.

US 9,077,726 B2
19

18. The method of claim 15, wherein the format of the
common language formatted message is generic Session Ini-
tiation Protocol (SIP).

19. The method of claim 15, further comprising setting
enforcement policies for determining whether messages 5
received by the federation server are acceptable.

20. The method of claim 19, further comprising applying
the enforcement policies to the first formatted message.

21. The method of claim of claim 15, further comprising
publishing a Service (SRV) record to direct the first formatted 10
message to the federation server.

#* #* #* #* #*

20

